

مكتب التكوين المهنئ وإنعكاش الشكفل

Office de la Formation Professionnelle et de la Promotion du Travail

Direction de la Recherche et de l'Ingénierie de la Formation Division Conception des Examens

Examen National de Fin de Formation

Session de Juin 2024 Examen de Fin de Formation (Epreuve Synthèse)

Eléments de correction							
Secteur :	Génie Electrique			Niveau :	Technicien Spécialisé		
<u>Filière :</u>	<u>Filière :</u> Automatisation Instrumentation Industrielle						
<u>Variante</u>	1	<u>Durée :</u>	4H00	<u>Barème</u>	/100		

Consignes et Précisions aux correcteurs :

Veuillez respecter impérativement les consignes suivantes :

- Le corrigé est élaboré à titre indicatif,
- Eviter de sanctionner doublement le stagiaire sur les questions liées,
- Pour toutes les questions de synthèse et de compréhension le correcteur s'attachera à évaluer la crédibilité et la pertinence de la réponse du stagiaire. Et à apprécier toute réponse cohérente du stagiaire,
- Le stagiaire n'est pas tenu de fournir des réponses aussi détaillées que celles mentionnées dans le corrigé,
- Pour les exercices de calcul :
 - Prendre en considération la méthode de calcul correcte (formule et relation de calcul correcte) même si le résultat final de calcul est faux
 - Le résultat final correct non justifié ne doit pas avoir la totalité de la note.
- En cas de suspicion d'erreur au niveau du corrigé, prière de contacter la Division de Conception des Examens.

Détail du Barème :

N° Des Dossiers	Travaux à réaliser	Barème
	Partie Théorique	
SUJET 1	Automates programmables II	/10points
SUJET 2	Commande électrique des machines	/10points
SUJET 3	Hydraulique, Pneumatique et Mécanique	/10points
SUJET 4	Commande électronique des machines électriques	/10points
		/40points
	Partie Pratique	
SUJET 5	Automates programmables I	/20points
SUJET 6	Capteurs et conditionneurs/Contrôleurs /Régulation PID	/20points
SUJET 7	Commande électrique des machines	/20points
		/60points
	Total Général	/100points

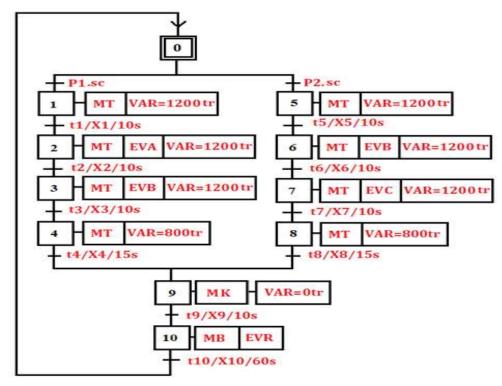
Filière	AII	Variante	1	Page	Page 1 sur 10
Corrigé	Examen de Fin de Formation	Session	Juin 2024		

Partie Théorique : / 40 POINTS

SUJET1: /10points

Identifier les entrées et les sorties en leurs accordant les adresses correspondantes. (Selon l'automate disponible).

Entrées	P1	P2	sc					
Adresses	E124.0	E124.1	E124.2					
Sorties	EVA	EVB	EVC	EVR	MK	MB	MT	VAR
Adresses	A124.0	A124.1	A124.2	A124.3	A124.4	A124.5	A124.6	MD0


2) Donner les codes API correspondants aux Vitesse suivantes.

(1Pt)

✓ **800 tr/min**: 14745,6 → 14746


✓ 1200 tr/min: 22118,4 → 22118

3) Compléter le grafcet ci-dessous. (<u>D'autres solutions sont envisageables</u>). (5Pts)

4) Etablir le bloc de la mise à l'échelle selon le langage étudié.

(1Pt)

Filière	AII	Variante	1	Page	Page 2 sur 10
Corrigé	Examen de Fin de Formation	Session	Juin 2024		

SUJET2: /10points

La plaque signalétique d'un moteur asynchrone triphasé à six pôles porte les indications suivantes :

$$400 \text{ V} / 690 \text{ V}$$
; 50 Hz ; $17.3 \text{ A}/10 \text{ A}$; 960tr/min ; $\cos \varphi = 0.80$

Le moteur est alimenté par un réseau triphasé 230V/400 V - 50 Hz

1. Calculer la vitesse de synchronisme \mathbf{n}_{s} du moteur $\mathbf{tr/min}$.

Ns =
$$\frac{120. \text{ f}}{\text{Nbre de pôles}} = \frac{120.50}{6} = 1000 \text{tr/min}$$

(1Pt)

(2Pts)

2. Comment doivent être couplés les enroulements de ce moteur ? (1Pt)

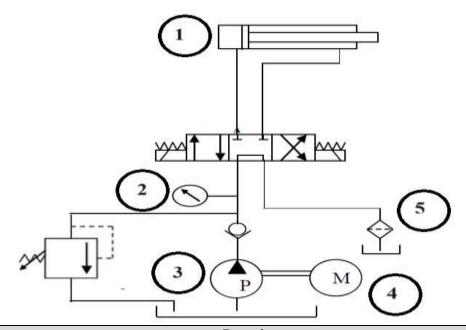
Couplage triangle

- 3. A partir de la plaque signalétique, quelle doit être l'intensité du courant nominal ? (2Pts)
 - En ligne : I = 17.3A
 - Dans un enroulement : I = 10A
- 4. Calculer **Pa** la puissance absorbée par le moteur.

$$Pa = U.I.\sqrt{3}.\cos\varphi = 400 \times 17.3 \times \sqrt{3} \times 0.8 = 9588.63W$$

5. Sachant que la résistance mesurée entre deux bornes du stator est égale à 1,5 Ω ; Calculer les pertes joule dans le stator P_{JS} . (2Pts)

$$Pjs = \frac{3}{2}RI^2 = \frac{3}{2} \times 1.5 \times 17.3^2 = 673.40W$$


6. Sachant que **les autres pertes dans le moteur valent 833** W, calculer la puissance utile du moteur, ainsi que son moment du couple utile. (2Pts)

$$Pu = Pa - pjs - (pjr + pfs + pm) = 9588.63 - 673.40 - 833 = 8082.23W$$

$$Tu = \frac{Pu}{2\pi \times Nr} \times 60 = \frac{8082.23}{2\pi \times 960} \times 60 = 80.38Nm$$

SUJET3: /10points

Le schéma ci-dessous (non complet) représente le circuit hydraulique de puissance d'une presse hydraulique.

Données

- La force maximale développée par le vérin à la sortie de la tige $F = 5000 \ daN$.
- La course maximale de la tige du vérin C = 250 mm.
- Le diamètre du piston (Alésage) **Dp = 50 mm**;
- Le diamètre de la tige d = 22 mm;

Filière	AII	Variante	1	Page	Page 3 sur 10
Corrigé	Examen de Fin de Formation	Session	Juin 2024		

1. Compléter le tableau en indiquant le nom de chaque composant repéré dans le schéma du circuit hydraulique et sa fonction. (5Pts)

Repère	Nom de l'élément	Fonction
1	Vérin hydraulique	Transformer l'énergie hydraulique en énergie mécanique
2	Manomètre	Indiquer la pression d'utilisation
3	Pompe hydraulique	Transformer l'énergie mécanique en énergie hydraulique
4	Moteur électrique	Entrainer la pompe en rotation
5	Filtre	Filtrer l'huile

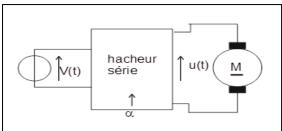
2. Dessiner sur le schéma hydraulique ci-dessus :

(2Pts)

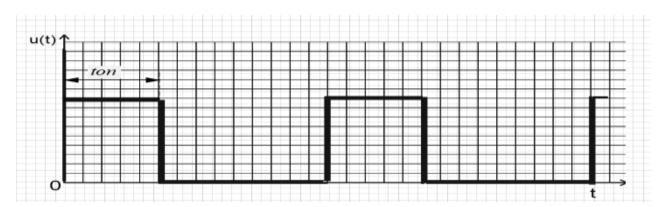
-Zone A : un distributeur 4/3 bistable à commande électrique centre Tandem.

-Zone B : un limiteur de pression réglable assurant la sécurité du circuit hydraulique.

3. Exprimer et calculer la pression maximale Pmax en bars dans la chambre du vérin à la sortie de sa tige. (3Pts)


$$Sp = \frac{\pi Dp^2}{4} = 19,62 \text{ bars}$$

$$Pmax = \frac{F}{Sp} = 254,84bars$$


SUJET4: /10points

La figure ci-contre représente un hacheur série placé entre une source fournissant une tension continue U et l'induit d'un moteur à courant continu.

Le chronogramme de la tension u(t) fournie par le hacheur série est représenté par la figure ci-dessous.

Temps: 0.1 ms / div.; tension: 5 V / div.

Filière	AII	Variante	1	Page	Page 4 sur 10
Corrigé	Examen de Fin de Formation	Session	Juin 2024		

1. Déterminer la valeur V de la tension à l'entrée du hacheur ainsi que la fréquence de hachage f. (2Pts)

$$V = 9 \times 5 = 45V$$
 $f = \frac{1}{T} = \frac{1}{14 \times 0.1 \times 10^{-3}} = 714.28 Hz$

2. Calculer le rapport cyclique α de la tension $\mathbf{u}(\mathbf{t})$. (2Pts)

$$\alpha = \frac{\text{ton}}{T} = \frac{0.5}{1.4} \approx 0.357$$

3. On note $\langle \mathbf{u} \rangle$ la tension moyenne de la tension $\mathbf{u}(t)$. Exprimer cette tension moyenne $\langle \mathbf{u} \rangle$ en fonction de α et de \mathbf{V} et calculer sa valeur. (2Pts)

$$<\mathbf{u}>=\alpha\times\mathbf{V}=\mathbf{0},357\times\mathbf{45}\approx\mathbf{16V}$$

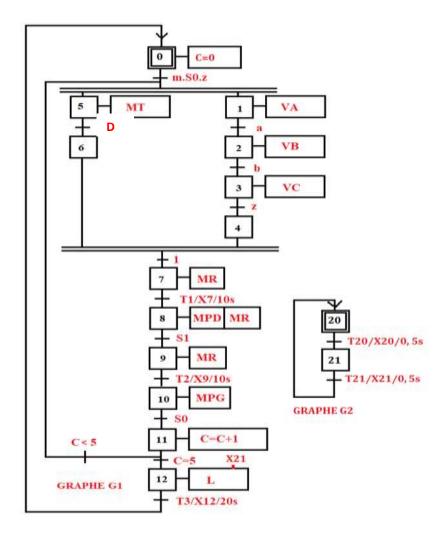
4. Quel est le rôle d'un hacheur série ?

(2Pts)

- □ Convertir une tension alternative sinusoïdale en une tension continue.
 Image: Convertir une tension continue fixe en une tension continue variable.

 □ Convertir une tension alternative sinusoïdale en une tension alternative sinusoïdale.
 □ Convertir une tension continue fixe en une tension alternative sinusoïdale variable
 - 5. Déterminer la valeur α que l'on doit donner au rapport cyclique pour obtenir une valeur moyenne $\langle u \rangle = 10 \text{ V}$ aux bornes de l'induit du moteur. (2Pts)

$$<\mathbf{u}>=\alpha\times\mathbf{V}\Rightarrow\alpha=\frac{<\mathbf{u}>}{V}=\frac{10}{45}=0,222$$


Partie Pratique: / 60 POINTS

SUJET5: /20points

1) Identifier les entrées et les sorties en leurs accordant les adresses correspondantes. (3,5Pts)

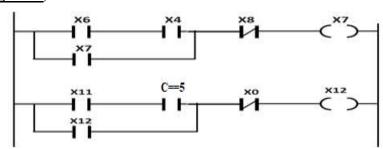
Entrées	dcy	a	b	Z	S 1	S0	D
Adresses	E124.0	E124.1	E124.2	E124.3	E124.4	E124.5	E124.6
Sorties	VA	VB	VC	MR	MPD	MPG	L
Adresses	A124.0	A124.1	A124.2	A124.3	A124.4	A124.5	A124.6

Filière	AII	Variante	1	Page	Page 5 sur 10	
Corrigé	Examen de Fin de Formation	Session	Juin 2024			

3) Donner les équations d'activation et de désactivation des étapes du tableau.

(4 Pts)

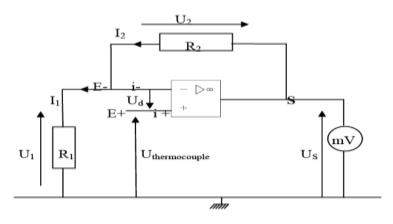
Etape X _i	CAX _i (Condition d'activation de l'étape X _i)	CDX_i (Condition de désactivation de l'étape X_i)
X ₇	X ₆ . X ₄	X_8
X ₁₂	X ₁₁ .C=5	X_0


4) Donner les équations des sorties MR et L.

(2Pts)

- MR = X7 + X8 + X9

$$-L = X12.X21$$


5) Etablir le programme LADDER adapté à un automate de votre choix des étapes X₇ et X₁₂ (<u>D'autres</u> solutions sont envisageables).
 (3,5Pts)

Filière	AII	Variante	1	Page	Page 6 sur 10
Corrigé	Examen de Fin de Formation	Session	Juin 2024		

SUJET6: /20points

On désire amplifier la tension entre deux soudures d'un thermocouple :

1. Expliquer le fonctionnement d'un thermocouple : (1 pt)

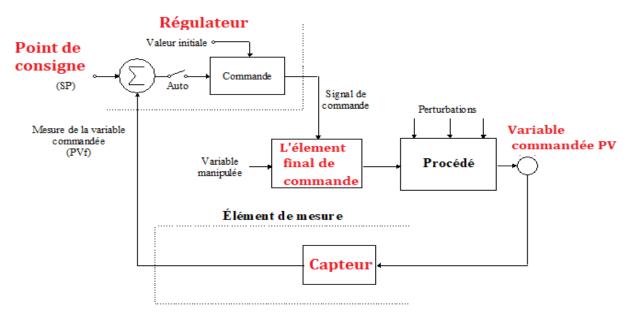
Un thermocouple est un capteur de température. Il se compose de deux métaux de natures différentes reliés à une extrémité. Quand la jonction des métaux est chauffée ou réfrigérée, une tension variable est produite, qui peut être ensuite transcrite en température

- 2. Sachant que l'AOP est parfait et en fonctionnement linéaire :
 - a. Quelles sont les valeurs des courants i+ et i- allant dans les deux entrées E+ et E-? (0,5 pt)

AOP est en fonctionnement linéaire i+= i-=0A

b. Quelle est la valeur de la tension **Ud** entre les deux entrées ? (0,5 pt)

AOP est en fonctionnement linéaire Ud=E⁺-E⁻ et E⁺=E⁻ donc Ud =0

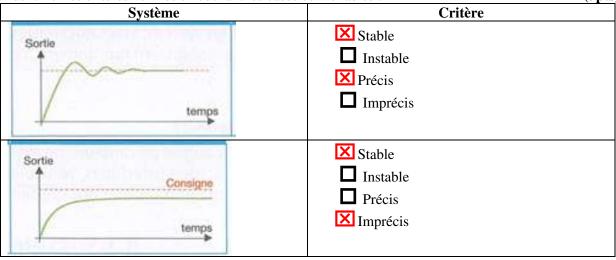

- 3. Soit U_1 la tension aux bornes de R_1 ; établir la relation entre U_1 et $U_{thermocouple}$ (2 pts) $U_1 + U_{d} = U_{thermocouple}$ et $U_{d} = 0$ donc $U_1 = U_{thermocouple}$
- 4. Soit U_2 la tension aux bornes de R_2 ; établir la relation entre U_2 , U_3 et $U_{thermocouple}$ (2 pts) $U_S = U_1 + U_2 \text{ et } U_1 = U_{thermocouple} \text{ donc } U_S = U_2 + U_{thermocouple}$
- 5. Montrer que l'expression du gain en tension est $G = 1 + \frac{R_2}{R_1}$ (2 pts) $G = \frac{R_2}{R_1} + 1$
- 6. Lorsque la différence de température entre les deux soudures du thermocouple $\Delta\theta$ =100°C, le millivoltmètre affiche 100mV.

Calculer R_2 ; Sachant que $R_1 = 2 k\Omega$ et la sensibilité du thermocouple $S_{thermocouple} = 0.05 \text{mV}/^{\circ}\text{C}$. (2 pts)

$$R_2 = \left(\frac{Us}{Uthermocouple} - 1\right)$$
. $R_1 = 38 \text{ k}\Omega$ Uthermocouple $= \Delta\theta$. $S = 5mV$

Filière	AII	Variante	1	Page	Page 7 sur 10
Corrigé	Examen de Fin de Formation	Session	Juin 2024		

7. Sachant que le capteur de température fait partie de la boucle de régulation ci-dessous, compléter la figure en mettant les noms des éléments et des variables manquantes. (5 pts)

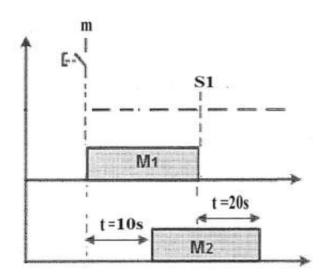

- 8. S'agit-il d'une boucle fermée ou ouverte ? justifier la réponse.
 - Boucle fermée car il y a une rétroaction de système.
- 9. Identifier la variable commandée :

(1pt)

(1pt)

Température

10. Identifier les critères vérifiés en cochant les cases convenables : (3pts)

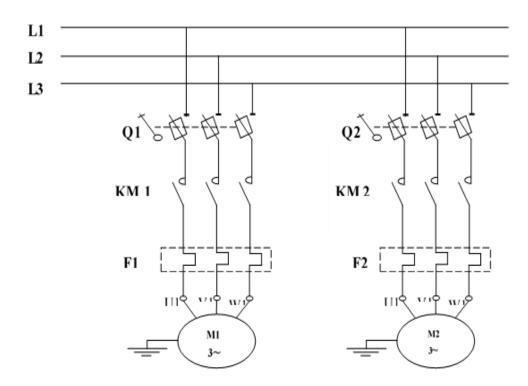

Filière	AII	Variante	1	Page	Page 8 sur 10	
Corrigé	Examen de Fin de Formation	Session	Juin 2024			

Une station comprend 2 moteurs à cage asynchrones triphasés M1 et M2.

Fonctionnement:

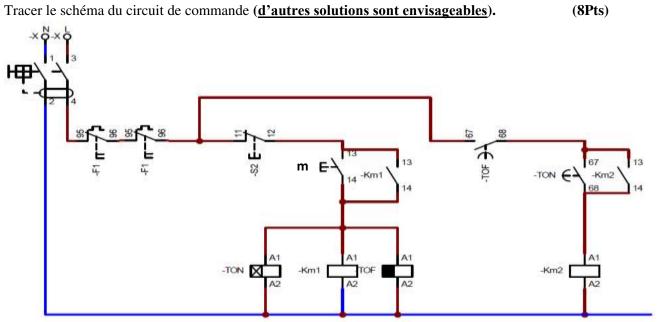
Le cycle de fonctionnement est décrit par le chronogramme ci- contre :

- L'opérateur doit appuyer sur le bouton poussoir **m** et le fonctionnement du système se déroule comme suit :
 - M1démarre.
 - Après une temporisation de 10s, M2 démarre.
- ➤ Pour l'arrêt du cycle, l'opérateur appuie sur le bouton poussoir S1 :
 - M1 s'arrêt.
 - Après une temporisation de 20s, M2 s'arrêt à son tour
- ➤ Chaque moteur est protégé par un relais thermique. Le déclenchement de l'un de ces deux relais provoque l'arrêt de toute l'installation.

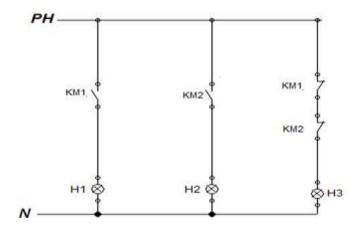

Signalisation:

> 3 lampes de signalisation signalent le fonctionnement du système :

L1 : marche de M1 L2 : marche de M2 L3 : fin du cycle


1. Compléter le schéma du circuit de puissance.

(6Pts)


Filière	AII	Variante	1	Page	Page 9 sur 10	
Corrigé	Examen de Fin de Formation	Session	Juin 2024			

2. Tracer le schéma du circuit de commande (<u>d'autres solutions sont envisageables</u>).

3. Tracer le schéma du circuit de signalisation.

(6Pts)

Filière	AII	Variante	1	Page	Page 10 sur 10	
Corrigé	Examen de Fin de Formation	Session	Juin 2024			